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Abstract: The Vehicle Routing Problem is essential in logistics for optimizing customer routes, especially in time
sensitive variants. This paper presents a two-stage algorithm for Vehicle Routing Problem with Time Windows. It 
effectively minimizes the number of vehicles, with transportation costs resulting just 0,38% above the best solution 
found on Solomon test instances. The approach limits search time to about 10 minutes, effectively balancing 
complexity and solution quality.
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CaweTaK: npo6neM pyTupa^a Bo3una npegcaB ^a jegaH og o c h o b h u x  npo6neMa y norucTuqu pyTupa^a 
noTpomana, noce6Ho Kaga ce yK^ynu BpeMeHCKa KoMnoHeHTa npo6neMa.y o b o m  pagy npegcraB^aMo 
anropMTaM ca gBe $a3e 3a onTuMu3aqujy npo6neMa pyTupa^a Bo3una ca BpeMeHcKUM orpaHune^uMa. 
AnropMTaM Ha e$eKTaH HanuH MUHUMU3yje 6poj Bo3una, nuju KBanuTeT noTBpfyjeMo Ha KnacuHHuM 
ConoMoHoBMM TecT npo6neMMMa. TpaHcnopTHu TpomKoBu cy Behu TeK 3a 0,38% og Haj6o^ux pe3ynTaTa 
npujaB^eHux y nuTepaTypu. y3 nuMuTupa^e paga anropuTMa 10 MMHyia, Ha e$eKTaH HanuH c m o  6anaHcupanu 
M3Me^y KoMnneKcHocTu npo6neMa u KBanuTeTa peme^a.
K^yHHe penu: pyiupa^e Bo3una, yTBp^uBa^e pegocnega, BpeMeHcKu npo3opu 
JEn Knacu<£u^M ja: C61
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Introduction

Vehicle Routing Problems (VRP) are the essence of every logistic model tackling 
transportation decisions. Assigning customers' requests to routes and seeking the satisfactory 
sequence has become an inevitable ingredient of contemporary decision-making tools. The 
variations of VRP are numerous, each originating from real-life applications. Following the 
lifestyle of modern customers, the most distinguished problems are time-related. Information 
about the approximate shipment arrival time increases consumer satisfaction, thus enhancing 
the quality of distribution.

The Vehicle Routing Problem with Time Windows (VRPTW) is a significant 
optimization challenge in logistics and transportation. It involves determining the optimal 
routes for a fleet of vehicles to service a set of customers within specified time windows. The 
complexity of VRPTW arises from its combinatorial nature and the need to balance multiple 
constraints, such as vehicle capacity, route length, and service times. Over the years, various 
solution approaches have been developed, each contributing to the advancement of the field.

The foundational work by Solomon in 1987 introduced VRPTW, providing 
benchmark problems and heuristic algorithms that have become standard references in the 
field. Solomon’s algorithms laid the groundwork for subsequent research, offering initial 
solutions that addressed time window constraints and vehicle scheduling in a structured 
manner.

Furthermore, Solomon’s work not only laid the foundation for future research but also 
stimulated the development of new methods and techniques for solving VRPTW. His 
benchmark problems continue to be widely used for testing new algorithms, enabling 
consistent evaluation of the performance of different approaches. Over the decades, the 
evolution of technology and the increase in data availability have enabled advanced analyses 
and the implementation of sophisticated models that better respond to the challenges of 
modern logistics systems.

Today, solving VRPTW is not just an academic endeavor but has direct applications 
in the industry. Optimizing routes while considering time windows can significantly reduce 
costs, improve efficiency, and increase customer satisfaction. For example, delivery services, 
food distributors, and pharmaceutical companies often use these models to ensure timely and 
reliable delivery of their products.

The aim of this paper is to provide an overview of current approaches to solving 
Solomon’s problems in VRP, identify the advantages and disadvantages of different methods, 
and propose potential improvements for future work. Special attention will be given to 
methods combining heuristics and metaheuristics with exact methods to achieve a better 
balance between solution quality and computation time. This paper will also explore how 
advances in computing and algorithmic theory can further enhance the efficiency and 
applicability of VRPTW in real-world conditions.
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1. Literature review

During the early 1990s, Desrochers et al. (1992) made significant contributions by 
developing efficient algorithms for solving large-scale VRPTW. Their work emphasized the 
use of Lagrangian relaxation techniques and branch-and-bound methods to improve 
computational efficiency.

In the early 2000s, the research expanded to include metaheuristic approaches, which 
provided more flexible and robust solutions to VRPTW. Braysy and Gendreau (2005) 
conducted a comprehensive survey of metaheuristic algorithms for VRPTW, highlighting the 
effectiveness of tabu search, simulated annealing, and genetic algorithms in finding high- 
quality solutions for complex routing problems.

The Clarke-Wright savings algorithm, introduced by Clarke and Wright in 1964, 
remains one of the most widely used heuristics for solving VRPTW. This algorithm 
constructs initial solutions by iteratively merging routes based on cost savings, and it has 
been enhanced and adapted in numerous studies. For instance, Toth and Vigo (2002) 
reviewed various extensions and adaptations of the Clarke-Wright algorithm, demonstrating 
its continued relevance in modern VRPTW research. In the late 2000s and 2010s, hybrid 
algorithms became prominent, combining different heuristic and metaheuristic techniques to 
solve VRPTW more efficiently. Goel and Maini (2018) introduced a hybrid algorithm 
combining Ant Colony Optimization (ACO) and Firefly Algorithm (FA), leveraging the 
strengths of both algorithms to enhance solution quality and convergence speed.

Macrina et al. (2019) explored energy-efficient solutions for VRPTW by 
incorporating mixed vehicle fleets and partial battery recharging. Their research highlights 
the practical applications of green logistics, addressing both environmental sustainability and 
operational efficiency. This dual focus is crucial in today's logistics environment, where there 
is a growing emphasis on reducing carbon footprints. Goel et al. (2019) addressed the issue 
of stochastic customer demands and service times, presenting models and solutions that 
account for real-world uncertainties. Their work improves the robustness of vehicle routing 
solutions, making them more adaptable to dynamic environments where demand and service 
times can vary unpredictably. Jiang et al. (2020) proposed a hybrid multiobjective 
evolutionary algorithm based on variable neighborhood search for solving VRPTW 
involving hazardous materials (HazMat). Their focus on safety and efficiency provides a 
comprehensive solution for complex routing problems.

The integration of machine learning techniques into VRPTW is a more recent 
development. Julie Poullet (2020) explored the use of clustering and reinforcement learning 
to solve large-scale VRPTW. By leveraging these advanced computational methods, her 
research demonstrated significant improvements in efficiency and solution quality, paving 
the way for future studies to incorporate machine learning in logistics optimization.

These contributions underscore the evolution of VRPTW solutions from foundational 
heuristics to sophisticated hybrid and machine learning-based approaches. As the field 
continues to advance, future research is likely to focus on integrating real-time data, further 
enhancing the adaptability and robustness of VRPTW solutions in diverse and dynamic
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environments in the direction of a broader field -  city logistics. City logistics is advancing 
towards the integration of multi-echelon distribution systems to enhance efficiency and 
sustainability in urban environments. This approach includes incorporating time constraints 
specifically to mitigate traffic congestion challenges (as explored by Rekabi, et al. in their 
study on pharmaceutical supply chain networks with perishable items). Additionally, it 
addresses the complexities of delivering perishable goods (as discussed by Bala et al., 2017) 
and managing biomass logistics (as highlighted in studies such as those by Cao et al. 2021.). 
These advancements aim to optimize the movement of goods within cities while considering 
operational limitations and environmental impacts, thus fostering smarter and more resilient 
urban logistics systems. For more details about literature on VRP and its variations, one can 
see Konstantakopoulos et al. (2022). Metaheuristic algorithms have been widely applied 
across various fields, not only transportation problems. Petrovic et al. (2024) review the 
mathematical applications in economics. Andrijevic et al. (2024) discuss the use of 
neural networks in energy consumption analysis, while Radak et al. (2024) illustrate the 
application of genetic algorithms for portfolio optimization.

2. Problem definition

This section contains formal problem definition of VRPTW. Let D denote the depot and let 
(a, b), a < b, a, b > 0  be the time window of the depot. Denote with V a set of homogeneous 
vehicles of capacity C. With {1,2,..., n} we will denote the set of customers, each of them 
with a time window (at, bt), at < bt, at, bt > 0, quantity qy, and a serving time st, Vi £ 
{1,2,..., n}. Each route starts and ends at depot, with operating time between [a, b]. This 
means that total route time, including traveling, waiting and serving time, is at most b — a. 
Figure 1 depicts a depot, a set of 16 customers and four vehicles with accompanying routes.

Figurel: Vehicle routing scheme
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Let ti be the time of arrival of the vehicle at customer i. If it arrives before a t, it will 
have to wait. Leaving time from customer i is m ax {tt, at} + s t . Total quantity of all 
customer requests on route must not exceed the vehicle capacity C. Number of all defined 
routes cannot be greater than the number of vehicles | V | . On Figure 2 we made an illustration 
of one possible route starting and ending at the depot and satisfying requests of four 
customers. We present time flow: the traveling, waiting, and serving time with lines of 
different shapes. Each object on this route is represented with a timeline and time window. 
In our example, waiting time occurs only at customer 2.

t

Figure2: Time flow on a route

Legend:
Time line

----------  Time window
--------* Travel time
..........  Serving time
------ Waiting time

3. The algorithm

In this section, we describe the algorithm for solving a VRPTW based on the metaheuristic 
Simulated Annealing (SA). It is a relatively simple, yet robust optimization technique for 
solving a range of optimization problems. SA is inspired by the cooling process in 
thermodynamics that imitates the process of metal cooling. Slower cooling transforms liquid 
metal into a crystal, which corresponds to the exploration of the solution space guided from 
feasibility to global optima. The papers of Kirkpatrick et al. (1983) and Černy (1985) are 
considered to be the introduction of the SA algorithm for optimization challenges. Both 
papers addressed a well-known problem of combinatorial optimization, the Traveling 
Salesman Problem (TSP). The use of SA is applied in many combinatorial optimization 
problems with single or multiple objectives, see Suman (2016).

Suppose that during the exploration of the solution space, the algorithm reaches some 
state sx, and that state s2 is a new candidate state. Given the evaluation function £■(•), the 
algorithm moves to state s2 with probability e x p (-(E (s 2) -  E (s1))/T ). The temperature T 
decreases with running time. Consequently, the algorithm always moves to a cheaper solution 
and accepts the more expensive solution with a decreasing probability. The latter is 
particularly important for overcoming the local optima.

With the multicriteria nature of VRPTW, we propose a two-stage algorithm:
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Stage 0. Forming the feasible solution.

Stage 1. Minimization of employed vehicles.

Stage 2. Minimization of total travel costs.

The solution space in all stages is explored following the SA principle. To reach a 
feasible solution, our evaluation function is guided with travel costs. Once the feasibility is 
achieved, we consider only states that satisfy the vehicle capacity and customer and depot 
time window constraints, throughout the algorithm execution. The evaluation function is 
composed of travel costs increased with a special ingredient in the first stage. Namely, after 
every k  iterations, we randomly choose a route and expand the evaluation function with a 
logarithm of the number of customers on the route. The procedure is repeated several times, 
and when the stopping criteria are satisfied, we move to the second stage. The stopping 
criteria is defined via the specific temperature T crit. Finally, in the second stage, given the 
number of vehicles, we explore the solution space with an evaluation function based only on 
total travel costs. Solutions with lower transportation costs, but a higher number of vehicles, 
are not considered.

Neighboring solutions are created using one of the four transformations:

T1. A customer is removed from the current route and inserted in a new position.

T2. Two customers interchange their positions.

T3. Let s and t be two different customers on the same route. Without loss of 
generality, suppose s precedes t, and denote s-t and as the predecessors of s and t, 
respectively, and s2 and t2 as the followers of s and t, respectively. So, the current route has 
the following structure: D,..., st , s, s2,..., t1t t, t2,..., D with s2 ^  t t . The new route is 
obtained by combining segments: D,..., s1, s, t, t1,..., s2, t2,..., D, where sub-route t t , ..., s2 
has different orientation from initial setting.

T4. Let s and t be two customers on different routes, with followers s2 and t2 
respectively. Route containing s has a structure D,..., s, s2, ..., D, and the one containing t is 
D, ..., t, t2, ..., D. The new routes are obtained by combining segments: D, ..., s, t2 , ..., D, and 
D ,..., t, s 2 , ...,D.

4. Results

We check the quality of the proposed approach on classical Solomon benchmark instances. 
Problem instances are defined in Solomon (1987) considering three dimensions. The first one 
is geographical distribution. The authors identify three characteristic situations for customer 
distribution: R -  random uniform distribution, C -  clustered, and RC -  semi-clustered. The 
second dimension is the time horizon. Instances with narrow time windows for both 
customers and the depot, denoted with 1, imply a short scheduling horizon. On the other 
hand, instances with wider time windows, also for both customers and the depot, are denoted 
with 2, and allow a long scheduling horizon. Finally, the third dimension is problem size, 
expressed by the number of customers: 25, 50, and 100 customers.
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In this paper, we consider the problem instances with 100 customers with both short 
and long scheduling horizons, and all geographical settings. All experiments were performed 
on the i5-4440@3.10GHz. In Table 1, we summarize our findings. The first column 
represents the problem group, with the number of the test in parenthesis. The second column 
shows the number of successful experiments. We run each problem 10 times, and 
characterize the experiment as successful if the algorithm reaches the minimum number of 
vehicles reported in the literature. The best solution for each instance is compared with the 
best-known solution (bks) by calculating (price — b ks)/b ks , where price is the price of 
the best-found solution and bks is the best-known solution for a particular instance (see 
https://www.sintef.no/projectweb/top/vrptw/100-customers/). Next, we calculate the average 
over the entire group, considering only successful experiments. Similarly, the last column 
contains the average using the same metric. However, instead of using only the best-found 
solution, we consider all results for a particular instance, and report the average of all 
experiments for the group.

Table 1: Results o f the algorithm for Solomon test instances

Group Number of 
successful tests

Best
found gap Average gap

C1 (9) 90 0.0072% 0.0084%
C2 (8) 80 0.0033% 0.0048%

R1 (12) 117 0.0000% 0.7738%
R2 (11) 109 0.0000% 0.5517%
RC1 (8) 80 0.0000% 0.3008%
RC2 (8) 80 0.0034% 0.4225%
Total: 556 0.0000% 0.3771%

We set the cooling scheme to obtain a working time of the algorithm of approximately 
10 minutes. However, the time needed to reach the best solution varied across the instances. 
On average, 392 seconds was the time when the algorithm discovered the best solution. The 
number of successful experiments was 556, or 99,29%. Four experiments failed, meaning 
our algorithm failed to find the minimal number of vehicles. Those were the instances “r104” 
from group R1 in 3 out of 10 experiments and “r207” from group R2 in 1 out of 10 
experiments.

Conclusion and future work

In this paper, we present a two-stage algorithm for VRPTW. The search procedure of the 
solution space is organized with a well-known metaheuristic procedure called Simulated 
Annealing. The approach leads to more than 99% success in matching the minimal number 
of vehicles, while lagging by an average of 0.38% from the best results in the literature. We 
have defined a cooling scheme to match approximately 10 minutes of working time. 
Although the working time does not look impressive by itself, we believe it is satisfactory 
given the problem complexity and quality of solutions. Unfortunately, apart from 
comparisons with the best-known solutions obtained through different approaches, it is 
difficult to perform a head-to-head comparison with individual algorithms. Authors generally
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focus on the best solutions, making it very challenging to assess how individual algorithms 
perform in average cases.

The presented algorithm has no practical limitations in execution, unlike, for 
example, algorithms based on mathematical programming, which require many 
resources for large-dimensional problems. However, the tests performed on Gehring & 
Homberger benchmark instances with 200 customers showed that our approach does not 
provide successful tests in a number of instances. The algorithm loses efficiency, and 
additional heuristic improvements are necessary.

In future work, we will try to implement a few approaches that could lead to better 
performance of the algorithm. We believe that parallelization of the search procedure could 
lead to lower time consumption, a more thorough search of the solution space, and possibly 
overcoming the local minimum. Another direction could be the implementation of different 
objective functions throughout the working phases of the algorithm. Some ideas could 
include reducing the waiting time of customers, increasing/reducing the number of customers 
on a route, or a variation in quantifying the number of customers on a route using other than 
a logarithmic function.

ACKNOWLEDGEMENT: This paper presents a part of the research from the project 
founded by the Ministry of Education, Science and Technological Development of the 
Republic of Serbia: Algebraic, logical and combinatorial methods with applications in 
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