UDC: 330.526.33(497.11) DOI: 10.5937/AnEkSub2247097L Original scientific article

Analysis of efficiency factors of companies in Serbia based on artificial neural networks

Анализа фактора ефикасности предузећа у Србији на бази вештачких неуронских мрежа

Radojko Lukić

University of Belgrade, Faculty of Economics, Belgrade, Republic of Serbia, radojko.lukic@ekof.bg.ac.rs

Abstract: This paper investigates the influence of certain factors on the efficiency of companies in Serbia using artificial neural networks. According to the results of empirical research using artificial neural networks, the significance of some observed factors on the efficiency of companies in Serbia is as follows: net profit 55.5%, operating revenues 59.4%, operating assets 52.8%, capital 59.6%, loss 100% and number of employees 51.3%. In order to improve the efficiency of companies in Serbia in the future, it is necessary, in the first place, to manage profits as efficiently as possible (i.e. to reduce losses as much as possible). This is also achieved with the most efficient management of sales, assets, capital and human resources (training, rewarding, job advancement, and flexible employment). Accelerated digitalization of the entire business certainly plays a significant role in that.

Keywords: efficiency, factors, artificial neural networks, Serbian companies JEL classification: L81, M31, M41, O32

Сажетак: У овом раду се истражује утицај појединих фактора на ефикасност предузећа у Србији коришћењем вечтачких неуронских мрежа. Према добијеним резултатима емпиријског истраживања коришћењем вештачких неуронских мрежа значај појединих посматраних фактора на ефикасност предузећа у Србији је следећи: нето добитак 55.5%, пословни приходи 59.4%, пословна имовина 52.8%, капитал 59.6%, губитак 100% и број запослених 51.3%. У циљу побољшања ефикасности предузећа у Србији у будућности неопходно је, на првом месту, што ефикасније управљати профитом (тј. у што већој мери смањити губитак). То се постиже, исто тако, и са што ефикаснијим управљањем продајом, активом, капиталом и људским ресурсама (тренинг, награђивање, напредовање на послу, флексибилно И запошљавање). Значајну улогу у томе има свакако и убрзана дигитализација целокупног пословања.

Кључне речи: ефикасност, фактори, вештачке неуронске мреже, предузећа Србије ЈЕЛ класификација: L81, M31, M41, O32

Introduction

In principle, the problem of researching the efficiency of companies based on artificial neural networks is very challenging (Rezaei et al., 2019; Sustrova, 2016; Machová1 & Vochozkal, 2019; Wanchoo, 2019; Sabau-Popa etal., 2021; Hafez etal., 2021). With this in mind, the subject of research in this paper are the efficiency factors of companies in Serbia using artificial neural networks. The goal and purpose of this is to investigate this issue as

comprehensively as possible in order to improve the efficiency of companies in Serbia through better control of key factors and the implementation of relevant measures.

The research of the problem treated in this paper is based on the hypothesis that the basic premise for improving the efficiency of companies (in this case in Serbia) is knowledge of critical factors (net profit, business revenues, business assets, capital, loss and number of employees) and their better control, as well as effective control of relevant measures taken in that direction. The given critical factors were chosen because, in our opinion, they determine the efficiency and financial performance of the company well. Input elements are: when measuring efficiency, number of employees, business assets, capital and output elements are: business revenues, loss and net profit.

The use of artificial neural networks plays a significant role in this. Artificial neural networks make it possible to see the impact of critical factors (net profit, business revenues, business assets, capital, loss and number of employees) on the success of a company's business. Their knowledge is a prerequisite for improving the business performance of companies through more efficient control. For these reasons, they are used in this paper.

The research of enterprise efficiency factors in Serbia using artificial neural networks is based on original empirical data for 25 companies from different sectors (5 companies each from the sectors: manufacturing, construction, wholesale and retail trade, J-Information and communication and public companies) collected from the Agency for Business Registers of the Republic of Serbia. The data are in line with relevant international standards and there are no limitations in terms of comparability at the domestic and international level.

1.Theoretical background

The As is well known, the literature dedicated to the assessment of the efficiency of companies based on artificial neural networks is becoming richer (Abiodun etal., 2018; Azarnoush & Arash, 2016; Beer etal., 2020; Gao et al., 2009; Hafez etal., 2021; Hasti etal., 2015; Liu, 2015; Huang etal., 2020; Lantz, 2019; Hütsch, 2021; Penpece & Elma, 2014; Sihem & Younes, 2017; Zhou & Gumbo, 2021, Shalev-Schwartz & Ben-David, 2014). However, there are very few, almost no complete works, as far as we know, dedicated to the analysis of the efficiency of companies in Serbia using artificial neural networks. This gap should be filled to some extent by this paper, and in particular, among other things, its scientific and professional contribution is reflected in it. Research through the literature in this paper, especially on the application of artificial neural networks in economics, serves as a theoretical, methodological and empirical basis for the analysis of the problem treated in this paper.

Motivations for adopting an artificial neural network include its flexibility in increasingly complex data structures, in creating extraordinary in conditions of sufficiently missing data, multicollinearity, and nonlinearity (Merkel etal., 2018). The advantage of artificial neural networks lies in their versatility, because they can be applied to almost any learning task (Leo etal., 2019). Numerous examples of successful practical application of

Анали Економског факултета у Суботици – The Annals of the Faculty of Economics in Subotica, Vol. 58, No. 47, pp. 097-115

artificial neural networks have been presented in the literature (Croda etal., 2019; Strandberg & Alas, 2019; Droomer & Bekker, 2020; Penpece & Elma, 2014).

2. Research methodology

The research methodology of the treated problem in this paper is based on artificial neural networks. In mathematical form, artificial neural networks can be expressed as:

$$0 = \sum_{l=1}^{n} w_l x_l + b \qquad (1)$$

wherein x_i *i* – input-layer of the artificial neural network, w_i – weight *i*-th inputs, *n* – the number of inputs, *a* – bias term and *O* – output layer.

The following types of neural networks are used in the experiment: single-layer Perceptron, multilayer Perceptron, Feed Forward Backpropagation neural network and Radial Basis Function Network.

3. Research results

A **multilayer Perceptron** (MLP), known as a multilayer transmission network, was used in this study (Lantz, 2019). The paper uses artificial neural networks to investigate the impact of the following factors on the efficiency of companies in Serbia, namely: net profit, operating revenues, operating assets, capital, loss and number of employees. Their efficiency control can certainly significantly affect the achievement of the target efficiency of companies in Serbia. Table 1 shows the initial data for 2019.

	Net profit VAR00 001	Business revenues VAR00002	Business assets VAR00003	Capital VAR00004	Loss VAR00005	Number of employees VAR00006	Efficiency* VAR00007
TIGAR TYRES DOO PIROT	9.025	103.463	52.604	12.322	0	3.530	1.00
PHILIP MORRIS OPERATIONS AD NIŠ	4.659	22.598	24.408	15.997	0	575	1.00
AD IMLEK PADINSKA SKELA	4.380	21.246	45.408	8.633	5.940	935	1.00
HEMOFARM AD VRŠAC	3.979	35.899	48.841	34.906	0	2.666	1.00
COCA-COLA HBC- SRBIJA DOO ZEMUN	3.642	33.035	49.658	40.798	0	837	1.00
PREDUZEĆE IVAN MILUTINOVIĆ - PIM AD BEOGRAD	3.867	119	1.339	813	8.488	180	1.00
IDC DOO BEOGRAD	3.087	78.206	3.077	3.077	10	643	1.00
Beograd na Vodi	1.840	10.784	6.967	6.967	2.657	71	1.00

Table 1. Initial data

DOO Beograd							
INCOP Doo Čuprija	1.763	4.890	1.803	1.803	0	78	1.00
OAO	1.710	6.413	1.710	1.710	0	142	1.00
Beltruboprovodstvoj							
ogranak Beograd							
DELHAIZE	5.175	104.869	86.264	58.851	0	12.579	1.00
SERBIA DOO							
BEOGRAD							
JT	1.918	19.271	15.275	4.374	4.056	282	1.00
INTERNATIONAL							
AD SENTA							
AGROMARKET	1.811	16.986	23.751	15.030	0	417	1.00
DOO							
KRAGUJEVAC					-		
JUGOIMPORT-	1.782	19.526	48.757	19.865	0	373	1.00
SDPR JP							
BEOGRAD	1 501	11.040	11.2.00	6.600		1.000	1.00
SPORT VISION	1.531	11.949	11.368	6.699	0	1.223	1.00
DOO BEOGRAD	10.50	15.001	12 101	22.250		(72)	1.00
TELENOR DOO	10.526	45.294	43.191	32.279	0	672	1.00
BEOGRAD TELEKOM SRBIJA	3.477	96.220	324.079	145.159	0	6.767	1.00
AD BEOGRAD	3.4//	86.230	324.079	145.159	0	0./0/	1.00
VIP MOBILE DOO	3.381	33.496	50.283	0	60.416	1.151	.00
BEOGRAD	5.561	55.490	30.285	0	00.410	1.131	.00
SBB DOO	3.319	27.784	64.757	20.856	22.621	1.624	1.00
BEOGRAD	5.519	27.704	04.757	20.850	22.021	1.024	1.00
PRVA TELEVIZIJA	1.076	5.063	6.318	1.920	0	207	1.00
DOO BEOGRAD	1.070	5.005	0.510	1.920	0	207	1.00
JP SRBIJAGAS	4.772	91.487	202.556	118.797	0	1.021	1.00
NOVI SAD	1.772	91.407	202.550	110.797	Ū.	1.021	1.00
JKP BEOGRADSKE	4.018	28.770	57.886	42.459	298	2.004	.00
ELEKTRANE		201110	011000	.2.1.09	220	2.001	
BEOGRAD							
JP EPS BEOGRAD	3.662	279.637	973.624	674.555	119.720	24.966	.00
JP POŠTA SRBIJE	1.932	25.291	30.505	24.638	0	14.922	1.00
BEOGRAD						-	
JUGOIMPORT-	1.782	19.526	48.757	19.865	0	373	1.00
SDPR JP							
BEOGRAD							
Notes The Jobs -		. 1 i.e	£ 1				

Note: The data are expressed in millions of dinars (employees as an integer).

* The authors' assessment (efficiency is marked with the number 1.00, and inefficiency with the number .00. Companies with losses are treated as inefficient).

Source: Agency for Business Registers of the Republic of Serbia

When determining the significance of independent variables (i.e. efficiency factors of companies in Serbia) based on artificial neural networks, a **multilayer perceptron networks** was used, as already mentioned. The calculation was performed using the SPSS software program. The obtained results are shown in Table 2 - 7, and annex 1, as well as in Figures 1-4.

EXECUTE. * Multilayer Perceptron Network. MLP VAR00007 (MLEVEL = N) BY VAR00001 VAR00002 VAR00003 VAR00004 VAR00005 VAR00006 / PARTITION TRAINING = 7 TESTING = 3 HOLDOUT = 0 / ARCHITECTURE AUTOMATIC = YES (MINUNITS = 1 MAXUNITS = 50) / CRITERIA TRAINING = BATCH OPTIMIZATION = SCALEDCONJUGATE LAMBDAINITIAL = 0.0000005 SIGMAINITIAL = 0.00005 INTERVALCENTER = 0 INTERVALOFFSET = 0.5 MEMSIZE = 1000 / PRINT CPS NETWORKINFO SUMMARY CLASSIFICATION SOLUTION IMPORTANCE / PLOT NETWORK ROC GAIN LIFT PREDICTED / STOPPINGRULES ERRORSTEPS = 1 (DATA = AUTO) TRAININGTIMER = ON (MAXTIME = 15) MAXEPOCHS = AUTO ERRORCHANGE = 1.0E-4 ERRORRATIO = 0.001 MISSING USERMISSING = EXCLUDE.

Table 2. Case Processing Summary

Case Processing Summary						
		Ν	Percent			
Sample	Training	20	95.2%			
	Testing	1	4.8%			
Valid		21	100.0%			
Excluded		4				
Total		25				

Source: the authors' own research

Case processing summary shows the number of cases included and excluded in the analysis. In the specific case, out of 25 analysed, 4 companies were excluded in the data processing process. 20 companies were trained (95.2%), and 1 company was tested (4.8%).

Table 3. Network information

Network information			
Input layer	Factors	1	VAR00001
		2	VAR00002
		3	VAR00003
		4	VAR00004
		5	VAR00005
		6	VAR00006
	Number of units ^a		109
Hidden layer (s)	Number of hidden layers		1
	Number of units in hidden l	ayer 1 ^a	7
	Activation function		Hyperbolic tangent
Output layer	Dependent variables	1	VAR00007

	Number of units	2
	Activation function	Softmax
	Error function	Cross-entropy
a. Excluding the bias unit		

Source: the authors' own research

Network information shows information about the neural network (Input layer, Hidden layer, Output layer). They are useful for ensuring that the specifications are correct. In the analysed case, there is only 1 hidden layer with 7 units.

Table 4. Model	Summary
----------------	---------

Model Summary		
Training	Cross entropy error	1.347E-5
	Percentage of incorrect predictions	0.0%
	Stopping rule used	Training error ratio criterion
		(.001) achieved
	Training time	0: 00: 00.01
Testing	Cross entropy error	8.546E-8
	Percentage of incorrect	0.0%
Dependent variabl	le: VAR00007	

Source: the authors' own research

Model summary shows the percentage of incorrect predictions. In this case: the percentage of incorrect predictions is 0.0%.

(Annex 1 shows the parameter estimates. The table parameter estimates primarily specify the weights and biases more precisely. In this case: the estimate of, say, parameter H (1: 7) in category 0.00 (inefficient) is .877 (87.7%) and in category 1.00 (efficient) -.96.4 (-96.4%). The accuracy is therefore at a satisfactory level.)

Classification	n					
	Predicted					
Sample	Observed	.00	1.00	Percent correct		
Training	.00	3	0	100.0%		
	1.00	0	17	100.0%		
	Overall percent	15.0%	85.0%	100.0%		
Testing	.00	0	0	0.0%		
	1.00	0	1	100.0%		
	Overall percent	0.0%	100.0%	100.0%		
Dependent va	ariable: VAR00007					

Source: the authors' own research

The classification table shows the results of the use of neural networks. The values on the diagonal are correct and the predictions below are incorrect. Neural network performance is determined by generalizing missing as well as predicting unused data during network training. So, for example, 3 inefficient companies (15.0%) and 17 efficient companies (85.0%) were trained. Only 1 efficient company (100%) was tested. Insight into the field training sample and testing sample shows that all values are outside the diagonal 0, indicating 100% prediction accuracy. The conclusion is that the predictions are correct.

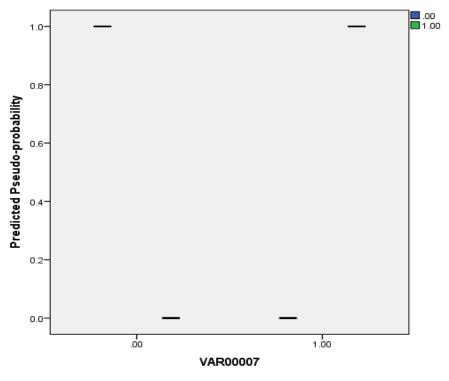


Figure 1. Predicted - observed chart

Source: the authors' image

The Predicted by observed chart shows the predicted values for each dependent variable. For categorical dependent variables, clustered boxplots of predicted pseudo probabilities are displayed for each response category, with the observed response category as the cluster variable. The scattering diagram is displayed for variable dependent variables.

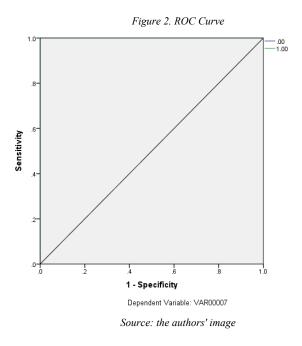
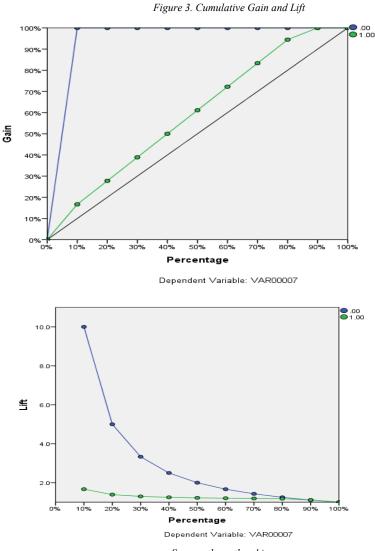



Table 6. Area under the curve

Area under the curve					
		Area			
VAR00007	.00	1,000			
	1.00	1,000			

Source: the authors' own research

RCO (Receiver Operating Characteristic) is displayed for each category dependent variable. The table shows the area below each curve. The ROC curve chart reveals the percentage of "false" positives, i.e. efficient units. Thus, for example, in a specific case, at a point on the reference line with 20% of sensitive and 20% of specifics, 80% (100% - 20%) of inefficient units can be expected. The explanation is similar for other percentages (points) on the reference line.

Source: the authors' image

The cumulative gains chart shows the cumulative gains for each categorydependent variable. The lift chart shows the lift for each category dependent variable. They are used to assess the performance of the classification model, and supplement the RCO curve. Metrics are very popular in marketing analytics. They can be successfully used for risk modelling, supply chain analysis, to find the best predictive model among multiple challenger models, etc. Thus, for example, according to the presented chart of cumulative gain category 1.00 (efficient): for 10% of effective cases it can be (according to the

probability test) expected to be approximately 20% ineffective; 50% of effective cases can be expected to be 60% ineffective; 90% of effective cases can be expected to be 100% ineffective; etc. The Lift chart is derived from the cumulative gain chart. Thus, for example, according to the presented chart for category 1.00 (effective) the ratio of cumulative gain for percentages of 10%, 40%, 90% is: 20/10% = 2; 50% / 40% = 1.25; 100% / 90% = 1.11; etc.

	Independent Varia	able Importance	
		Importance	Normalized Importance
Net profit	VAR00001	.147	55.5%
Business revenues	VAR00002	.157	59.4%
Business assets	VAR00003	.139	52.8%
Capital	VAR00004	.157	59.6%
loss	VAR00005	.264	100.0%
Number of employees	VAR00006	.135	51.3%
	Source: the	e authors' own research	

Table 7. Independent Variable Importance

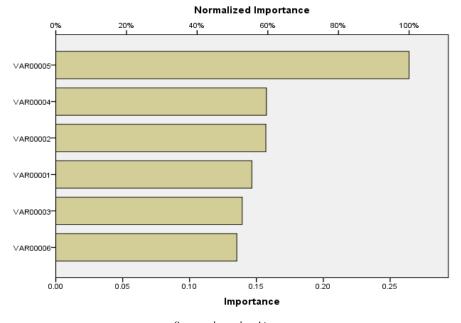


Figure 4. Normalized Importance

Source: the authors' image

Normalized importance chat illustrates the importance of the analysed factors.

4. Discussion

According to the obtained results of empirical research using artificial neural networks, the importance of certain observed independent variables (factors), expressed as a percentage, for the efficiency of companies in Serbia is as follows: net profit 55.5%, operating revenues 59.4%, operating assets 52.8%, capital 59.6%, loss 100% and number of employees 51.3%.

In order to improve the efficiency of companies in Serbia in the future, it is necessary, primarily, to manage profits as efficiently as possible (i.e. to reduce losses as much as possible). This is also achieved with the most efficient management of sales, assets, capital and human resources (training, rewarding, job advancement, flexible employment, health and pension insurance). Accelerated digitalization of the entire business certainly plays a significant role in that.

Research in this paper has shown that artificial neural networks are excellent for determining the impact of certain factors on the efficiency of enterprises in Serbia. Because they enable the perception of complex connections between input and output elements. Considering that, in addition to other methods, artificial neural networks should be used in the analysis of company efficiency factors in Serbia.

Conclusion

Based on the obtained results of empirical research using artificial neural networks, it can be stated that the importance of certain observed factors (expressed as a percentage) on the efficiency of companies in Serbia is as follows: net profit 55.5%, operating revenues 59.4%, operating assets 52.8%, capital 59.6%, loss 100% and number of employees 51.3%.

All in all, in order to improve the efficiency of companies in Serbia in the future, it is necessary to manage profits as efficiently as possible (i.e. to reduce losses as much as possible). This is also achieved with the most efficient management of sales, assets, capital and human resources (training, rewarding, job advancement, flexible employment). In any case, the accelerated digitalization of the entire business has a significant role in that.

As far as the effects of the implication are concerned, we can say the following: research in this paper has clearly shown that the very effective application of artificial neural networks in identifying the strength of the influence of factors on the efficiency of enterprises in Serbia. Therefore, the use of artificial neural networks is recommended, especially in combination with other related statistical techniques and multicriteria decision-making methods.

When researching the efficiency factors of companies in Serbia using artificial neural networks, one should keep in mind the extent to which empirical data are accurate. In this respect, they certainly differ from one company to another "due to a certain haircut" from certain (for example, increasing profits to obtain a bank loan), despite the fact that relevant international standards are applied.

Generally speaking, the limiting factor of application in economics and management, in this case in the analysis of the efficiency factors of companies in Serbia, is still insufficient knowledge of the theoretical, methodological and empirical significance of artificial neural networks. In the future, thanks to a better knowledge of the essence, the importance of the application of artificial neural networks in general in economics and management in various research areas (for example, credit risk assessment) will become even more important.

References

Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H. (2018). State-of-the-art in artificial neural network applications: a survey. *Heliyon*, 4(11), e00938. <u>https://doi.org/10.1016/j.heliyon.2018.e00938</u>

Azarnoush, A., & Arash, A. (2016). Modelling and evaluating customer loyalty using neural networks: evidence from startup insurance companies. *Future Business Journal*, 2(1), 15-30. Doi: <u>http://dx.doi.org/10.1016/j.fbj.2016.04.001</u>

Beer, K., Bondarenko, D., & Farrelly, T. et al. (2020). Training deep quantum neural networks. *Nat Commun*, 11, 808. Doi: <u>https://doi.org/10.1038/s41467-020-14454-2</u>

Croda, R. M. C., Romero, D. E. G., & Morales, S. O. C. (2019). Sales prediction through neural networks for a small dataset. *IJIMAI*, 5(4), 35–41. Doi: <u>https://doi.org/10.9781/ijimai.2018.04.003</u>

Droomer, M., & Bekker, J. (2020). Using machine learning to predict the next purchase date for an individual retail customer. *South African Journal of Industrial Engineering*, 31(3), 69–82. Doi: <u>https://doi.org/10.7166/31-3-2419</u>

GAO, Y., Liang, Y., Liu, Y., Zhan, S., & Ou, Z. (2009). A neural-network-based forecasting algorithm for retail industry. *International Conference on Machine Learning and Cybernetics*, 919-924. Doi: <u>https://doi.org/10.1109/ICMLC.2009.5212392</u>

Hafez, M. M., Fernández, V. A., Redondo, R. P.D., & Pazó, H. O. (2021). Classification of retail products: from probabilistic ranking to neural networks. *Appl. Sci.*, 11(9), 4117. Doi: <u>https://doi.org/10.3390/app11094117</u>

Hasti, C., Rajan, N., & Chawla, D. (2015). An analysis of retail supply chains; simulation in neural networks and maximum flow networks. *DIAS TECHNOLOGY REVIEW*, 12(1). Doi: <u>https://ssrn.com/abstract=3823059</u>

Huang, J., Chai, J., & Cho, S. (2020). Deep learning in finance and banking: a literature review and classification. *Front. Bus. Res. China*, 14, 13. Doi: https://doi.org/10.1186/s11782-020-00082-6

Hütsch, M. (2021). Comparing architectures of neural networks for an integration in enterprise systems: a retail case study. *Procedia Computer Science*, 181, 619-627. Doi: <u>https://doi.org/10.1016/j.procs.2021.01.209</u>.

Анали Економског факултета у Суботици – The Annals of the Faculty of Economics in Subotica, Vol. 58, No. 47, pp. 097-115

Lantz, B. (2019). *Machine Learning with R: Expert Techniques for Predictive Modelling*. Packt Publishing.

Leo, M., Sharma, S., & Maddulety, K. (2019). Machine learning in banking risk management: a literature review. *Risks*, 7(1), 29–51. Doi: https://doi.org/10.3390/risks7010029

Liu, H. J. (2015). Forecasting model of supply chain management based on neural network. International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 2015).

Machová1, V.Y., & Vochozka1, M. (2019). Analysis of business companies based on artificial neural networks. SHS Web of Conferences 61, 01013, 1-12 Doi: https://doi.org/10.1051/shsconf/20196101013 IES2018

Merkel, G. D., Povinelli, R. J., & Brown, R. H. (2018). Short-term load forecasting of natural gas with deep neural network regression. *Energies*, 11(8), 2008. Doi: <u>https://www.mdpi.com/1996-1073/11/8/2008</u>

Penpece, D., & Elma, O. E. (2014). Predicting sales revenue by using artificial neural network in grocery retailing industry: a case study in Turkey. *International Journal of Trade, Economics and Finance*, 5(5), 435–440. Doi: https://doi.org/10.7763/IJTEF.2014.V5.411

Rezaei, S., Shokouhyar, S., & Zandieh, M. (2019). A neural network approach for retailer risk assessment in the aftermarket industry. *Benchmarking: An International Journal*, 26(5). 1631-1647. Doi: <u>https://doi.org/10.1108/BIJ-06-2018-0162</u>

Sabau-Popa, C. D., Popa, N., Victoria, B., & Ramona. S. (2021). Composite financial performance index prediction – a neural networks approach. *Journal of Business Economics and Management*, 22, 277-296. Doi: https://doi.org/10.3846/jbem.2021.14000.

Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press. Doi: https://doi.org/10.1017/CBO9781107298019

Sihem, K., & Younes, B. B. (2017). Artificial intelligence for credit risk assessment: artificial neural network and support vector machines. *ACRN Oxford Journal of Finance and Risk Perspectives*, 6(2), 1-17.

Strandberg, R., & Alas, J. (2019). A comparison between neural networks, Lasso regularized logistic regression, and gradient boosted trees in modelling binary sales. Master's project, KTH Royal Institute of Technology, Stockholm.

Sustrova, T. (2016). An artificial neural network model for a wholesale company's ordercycle management. *International Journal of Engineering Business Management (IJEBM)* First Published January 1. Doi: <u>https://doi.org/10.5772/63727</u>

Wanchoo, K. (2019). Retail demand forecasting: a comparison between deep neural network and gradient boosting method for univariate time series," 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), 1-5. Doi: https://doi.org/10.1109/I2CT45611.2019.9033651

Zhou, H., & Gumbo, V. (2021). Supervised machine learning for predicting SMME sales: an evaluation of three algorithms. *The African Journal of Information and Communication (AJIC)*, 27, 1-21. Doi: <u>https://doi.org/10.23962/10539/31371</u>

<u>ANNEX</u>

Param	eter estimates									
		Predicte	d						1	
		Hidden I	ayer 1	1		1	1	1	Output layer	
Predic	tor	H(1:1)	H(1:2)	H(1:3)	H(1:4)	H(1:5)	H(1:6)	H(1:7)	[VAR00007=.00]	[VAR00007=1.00]
Input layer	(Bias)	.098	.583	.366	.791	501	.010	579		
	[VAR00001=1.08]	.145	.426	347	101	.169	072	122		
	[VAR00001=1.53]	.479	062	.401	.149	174	097	.016		
	[VAR00001=1.71]	305	.315	.406	.445	500	272	.211		
	[VAR00001=1.78]	.363	.135	.382	042	334	.036	438		
	[VAR00001=1.81]	.437	006	063	.433	.046	.422	.182		
	[VAR00001=1.84]	.195	.326	.443	081	.032	.329	.268		
	[VAR00001=1.92]	.360	.316	255	.047	.139	.156	469		
	[VAR00001=1.93]	216	.144	.519	.342	.013	.219	436		
	[VAR00001=3.09]	293	.071	.564	.610	.243	148	.145		
	[VAR00001=3.32]	.024	.282	.355	.386	.293	.160	352		
	[VAR00001=3.38]	.097	550	176	564	.051	311	.658		
	[VAR00001=3.48]	.134	.382	.519	.179	.243	393	.254		
	[VAR00001=3.64]	.345	111	.043	.548	.312	.126	.115		
	[VAR00001=3.66]	565	449	158	669	.017	115	.346		
	[VAR00001=3.98]	247	.132	231	.487	.217	363	.450		
	[VAR00001=4.02]	655	515	209	052	.621	.306	.402		
	[VAR00001=4.38]	062	.040	.494	.437	039	244	.394		
	[VAR00001=4.77]	154	.325	.409	.355	202	.081	.289		
	[VAR00001=5.18]	188	177	.088	.291	128	039	.082		
	[VAR00001=10.53]	.296	236	.309	.422	292	425	.336		
	[VAR00002=5.06]	436	.204	.235	.081	.061	152	482		
	[VAR00002=6.41]	.217	.511	161	266	390	.132	.280		
	[VAR00002=10.78]	.254	086	.503	.019	.258	361	326		

Annex 1. Parameter estimates

[VAR00002=11.95]	.565	.054	.199	.439	.020	.273	.071
[VAR00002=16.99]	.347	074	.263	.332	035	304	209
[VAR00002=19.27]	.156	285	.282	239	274	185	506
[VAR00002=19.53]	.478	110	306	.026	501	251	109
[VAR00002=21.25]	.211	.231	.204	008	.015	214	345
[VAR00002=25.29]	.292	398	.085	315	.425	310	057
[VAR00002=27.78]	.247	.107	.461	.268	303	.290	308
[VAR00002=28.77]	139	.154	181	456	.308	.031	.137
[VAR00002=33.04]	024	040	070	.070	028	149	256
[VAR00002=33.50]	230	.198	137	731	.430	.191	.496
[VAR00002=35.90]	330	.352	.292	.336	.056	.438	.069
[VAR00002=45.29]	062	.326	406	.406	.413	.025	335
[VAR00002=78.21]	.290	330	.541	192	006	488	619
[VAR00002=86.23]	.489	.364	.302	.394	.284	.207	444
[VAR00002=91.49]	.354	.283	.226	.438	115	520	.349
[VAR00002=104.87	048	408	.179	.434	414	.051	.184
J [VAR00002=279.64	.203	577	678	266	.845	.145	.643
[VAR00003=1.71]	261	111	288	043	247	.022	241
[VAR00003=3.08]	287	280	.010	.149	050	.281	075
[VAR00003=6.32]	.471	.092	.014	046	449	075	.151
[VAR00003=6.97]	.364	049	108	.592	.145	454	.201
[VAR00003=11.37]	.044	380	.458	.038	.373	.460	412
[VAR00003=15.28]	.167	140	.132	.092	088	243	154
[VAR00003=23.75]	366	102	.262	072	001	173	159
[VAR00003=30.51]	.159	.393	.477	143	.205	357	390
[VAR00003=43.19]	.065	328	.280	142	371	.330	.370
[VAR00003=45.41]	.029	022	.439	.391	033	406	.259
[VAR00003=48.76]	002	021	.524	171	092	.119	.058
[VAR00003=48.84]	.137	.061	084	.215	279	265	097
[VAR00003=49.66]	005	.483	232	.171	.369	054	217

[VAR00003=50.28]	446	434	003	.038	.665	.387	.269
[VAR00003=57.89]	189	339	070	663	.286	.313	.716
[VAR00003=64.76]	159	.536	066	033	.021	031	.207
[VAR00003=86.26]	.026	217	.163	.416	.244	.254	481
[VAR00003=202.56	151	394	174	104	.312	.297	.207
J [VAR00003=324.08	251	.161	415	274	.397	319	.362
J [VAR00003=973.62	004	117	176	304	.598	.286	092
J [VAR00004=.00]	526	266	208	591	.685	.298	.604
[VAR00004=1.71]	057	.211	321	.318	.236	.146	.397
[VAR00004=1.92]	.108	247	.336	029	074	.295	476
[VAR00004=3.08]	.643	.520	105	073	301	083	448
[VAR00004=4.37]	023	.039	263	.136	.025	277	052
[VAR00004=6.70]	409	.249	224	356	.341	238	.149
[VAR00004=6.97]	.119	189	.028	.202	.225	.113	511
[VAR00004=8.63]	098	307	089	076	468	442	179
[VAR00004=15.03]	.414	012	412	307	160	.456	.184
[VAR00004=19.87]	328	007	.458	.126	.002	291	.267
[VAR00004=20.86]	.561	311	144	.011	128	.002	.040
[VAR00004=24.64]	.468	284	.015	.341	514	.152	405
[VAR00004=32.28]	016	210	.466	.122	.324	.196	.114
[VAR00004=34.91]	226	.453	350	.101	.320	278	485
[VAR00004=40.80]	.250	.038	113	336	.018	.159	.118
[VAR00004=42.46]	.074	335	559	418	.683	.445	147
[VAR00004=58.85]	.214	.077	.084	.253	143	.234	277
[VAR00004=118.80	.517	264	265	311	143	.296	.209
J [VAR00004=145.16 1	261	050	.182	.201	198	442	388
J [VAR00004=674.56	324	.092	554	475	.760	.305	.689
J [VAR00005=.00]	.977	.767	.641	.469	984	498	745
[VAR00005=2.66]	.150	.584	069	.367	533	075	002

	[VAR00005=4.06]	.637	.466	.667	.431	.029	336	.301		
	[VAR00005=5.94]	.442	.506	.166	157	.297	193	.211		
	[VAR00005=10.00]	.408	.089	081	.108	143	.418	.207		
	[VAR00005=22.62]	117	190	.331	.236	.084	012	438		
	[VAR00005=60.42]	357	505	.131	197	.282	.346	.095		
	[VAR00005=119.72	491	233	475	633	.602	268	.009		
	J [VAR00005=298.00	.015	010	374	379	.183	117	.171		
	[VAR00006=1.02]	167	.075	374	.585	.035	021	.221		
	[VAR00006=1.15]	096	522	464	320	.482	095	.356		
	[VAR00006=1.22]	267	269	380	.370	.083	266	.318		
	[VAR00006=1.62]	.124	.069	.322	049	439	572	391		
	[VAR00006=2.00]	.028	330	162	475	.021	.034	.801		
	[VAR00006=2.67]	314	.065	.367	.019	485	356	.231		
	[VAR00006=6.77]	.269	.337	319	069	515	034	099		
	[VAR00006=12.58]	.222	.284	386	120	.023	051	.246		
	[VAR00006=14.92]	349	150	447	289	474	449	264		
	[VAR00006=24.97]	707	.044	578	080	.261	.300	.726		
	[VAR00006=71.00]	.187	.080	.021	029	.343	259	.072		
	[VAR00006=142.00	305	113	.227	.192	.239	.099	457		
	[VAR00006=207.00	.202	.402	188	.527	220	.189	.375		
	[VAR00006=282.00	250	.097	316	.665	647	.000	110		
	[VAR00006=373.00	375	.275	260	.060	.272	034	.222		
	[VAR00006=417.00	.321	.468	.140	090	155	068	.214		
	[VAR00006=643.00	.199	.292	.152	219	119	422	.029		
	[VAR00006=672.00	.439	.202	.205	111	.020	.185	.358		
	J [VAR00006=837.00	093	172	081	146	498	.054	237		
	[VAR00006=935.00	.019	.279	.233	327	508	069	421		
Hidde	(Bias)								802	.670
n layer	H(1:1)								872	1.058

1	H(1:2)				-1.022	.862
	H(1:3)				775	.412
	H(1:4)				-2.865	2.338
	H(1:5)				.930	-1.420
	H(1:6)				1.658	-1.135
	H(1:7)				.877	964

Source: the authors' own research